Altered stoichiometry Escherichia coli Cascade complexes with shortened CRISPR RNA spacers are capable of interference and primed adaptation
نویسندگان
چکیده
The Escherichia coli type I-E CRISPR-Cas system Cascade effector is a multisubunit complex that binds CRISPR RNA (crRNA). Through its 32-nucleotide spacer sequence, Cascade-bound crRNA recognizes protospacers in foreign DNA, causing its destruction during CRISPR interference or acquisition of additional spacers in CRISPR array during primed CRISPR adaptation. Within Cascade, the crRNA spacer interacts with a hexamer of Cas7 subunits. We show that crRNAs with a spacer length reduced to 14 nucleotides cause primed adaptation, while crRNAs with spacer lengths of more than 20 nucleotides cause both primed adaptation and target interference in vivo Shortened crRNAs assemble into altered-stoichiometry Cascade effector complexes containing less than the normal amount of Cas7 subunits. The results show that Cascade assembly is driven by crRNA and suggest that multisubunit type I CRISPR effectors may have evolved from much simpler ancestral complexes.
منابع مشابه
Spacer-length DNA intermediates are associated with Cas1 in cells undergoing primed CRISPR adaptation
During primed CRISPR adaptation spacers are preferentially selected from DNA recognized by CRISPR interference machinery, which in the case of Type I CRISPR-Cas systems consists of CRISPR RNA (crRNA) bound effector Cascade complex that locates complementary targets, and Cas3 executor nuclease/helicase. A complex of Cas1 and Cas2 proteins is capable of inserting new spacers in the CRISPR array. ...
متن کاملProgrammable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus.
Immunity against viruses and plasmids provided by CRISPR-Cas systems relies on a ribonucleoprotein effector complex that triggers the degradation of invasive nucleic acids (NA). Effector complexes of type I (Cascade) and II (Cas9-dual RNA) target foreign DNA. Intriguingly, the genetic evidence suggests that the type III-A Csm complex targets DNA, whereas biochemical data show that the type III-...
متن کاملThe Cas6e ribonuclease is not required for interference and adaptation by the E. coli type I-E CRISPR-Cas system
CRISPR-Cas are small RNA-based adaptive prokaryotic immunity systems protecting cells from foreign DNA or RNA. Type I CRISPR-Cas systems are composed of a multiprotein complex (Cascade) that, when bound to CRISPR RNA (crRNA), can recognize double-stranded DNA targets and recruit the Cas3 nuclease to destroy target-containing DNA. In the Escherichia coli type I-E CRISPR-Cas system, crRNAs are ge...
متن کاملThe CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers
Bacteria and archaea acquire resistance to foreign genetic elements by integrating fragments of foreign DNA into CRISPR (clustered regularly interspaced short palindromic repeats) loci. In Escherichia coli, CRISPR-derived RNAs (crRNAs) assemble with Cas proteins into a multi-subunit surveillance complex called Cascade (CRISPR-associated complex for antiviral defense). Cascade recognizes DNA tar...
متن کاملThe Influence of Copy-Number of Targeted Extrachromosomal Genetic Elements on the Outcome of CRISPR-Cas Defense
Prokaryotic type I CRISPR-Cas systems respond to the presence of mobile genetic elements such as plasmids and phages in two different ways. CRISPR interference efficiently destroys foreign DNA harboring protospacers fully matching CRISPR RNA spacers. In contrast, even a single mismatch between a spacer and a protospacer can render CRISPR interference ineffective but causes primed adaptation-eff...
متن کامل